Mass-decorrelated Xbb tagger

Wei Ding, Tsinghua University

On behalf of Xbb tagging group

26 Sep 2019, Flavour Tagging Algorithm meeting

Mass-decorrelated Xbb tagger

Hbb tagging

- H->bb with largest branching factor in Standard Model
- Identification of jets containing pairs of b-hadrons

Motivation

- Tagger developed (reference) by Julian using Neural Network is good in performance but highly mass correlated
- Develop a mass de-correlated Hbb tagger (XbbScore) using Neural Network also with good performance

Sample processing

Framework

- https://github.com/computational-physcis-2011301020083/Mass-decorrelated-Xbb-tagger
- Tools: Keras, TensorFlow, Numpy, H5py, Pandas

Used samples:

- https://gitlab.cern.ch/atlas-boosted-hbb/xbbdatasets/blob/master/p3870/h5-datasets-VRalg_0919-mc16a.txt
- Hbb samples:
 - GhostHBosonsCount>=1
- Top samples:
 - GhostTQuarksFinalCount>=1
- Dijets samples
 - Slices JZ0W to JZ12W

Sample processing

	Dijets	Hbb	Тор	Total
Training	4M	2M	2M	8M
Validation	1M	0.5M	0.5M	2M
Testing	~4.5M	~0.8M	~1M	~6.3M
Total	~9.5M (sub-sample)	~3.3M	~3.5M	~16.3M

Training Features

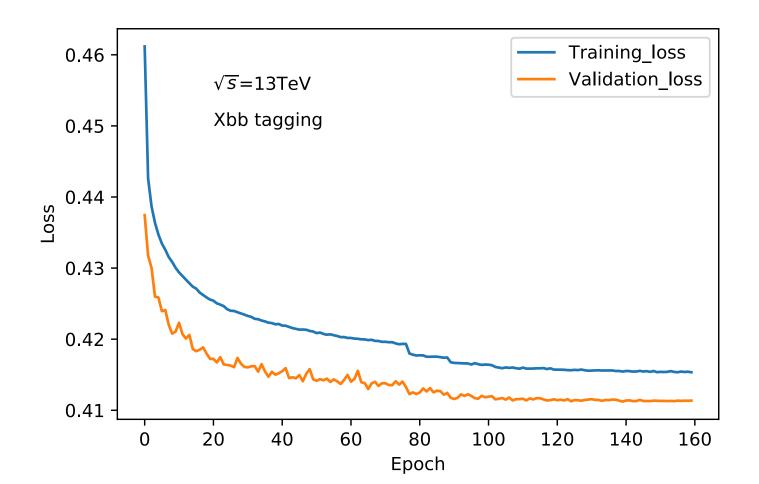
- Fat Jet:
 - Kinematics: ['pt','eta']
- Subjet_VRGhostTag_{1,2,3}:
 - JetFitter: ['JetFitter_N2Tpair', 'JetFitter_dRFlightDir', 'JetFitter_deltaeta', 'JetFitter_deltaphi', 'JetFitter_energyFraction', 'JetFitter_mass', 'JetFitter_massUncorr', 'JetFitter_nSingleTracks', 'JetFitter_nTracksAtVtx', 'JetFitter_nVTX', 'JetFitter_significance3d']
 - SV1: ['SV1_L3d', 'SV1_Lxy', 'SV1_N2Tpair', 'SV1_NGTinSvx', 'SV1_deltaR', 'SV1_dstToMatLay', 'SV1_efracsvx', 'SV1_masssvx', 'SV1_significance3d']
 - IPRNN: ['iprnn_pu', 'iprnn_pc', 'iprnn_pb']
- Totally 71 training features without mass correlation

Network Architecture

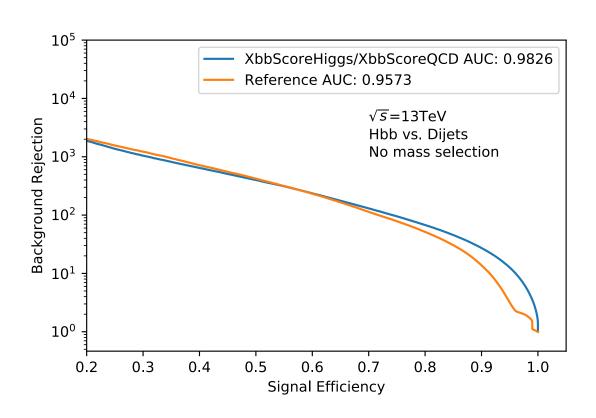
Features	Training Features (VRGhostTag)		
Optimizer	Adam		
Number of hidden layers	6		
Nodes per layer	250		
activation	Relu		
learning rate	0.01		
decay	0.00001		
epochs	300		
loss	categorical crossentropy		

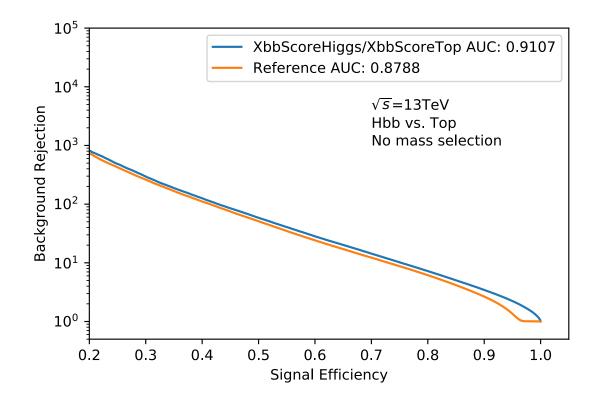
Over-fitting Check

• Loss vs. Epoch

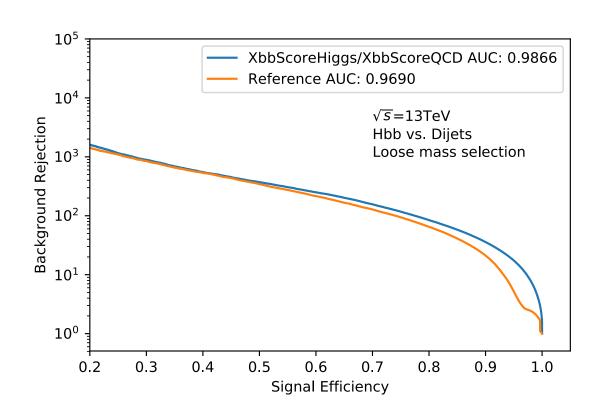


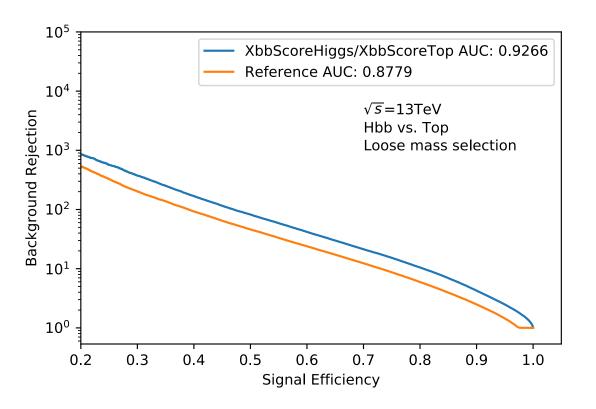
ROC: Full range



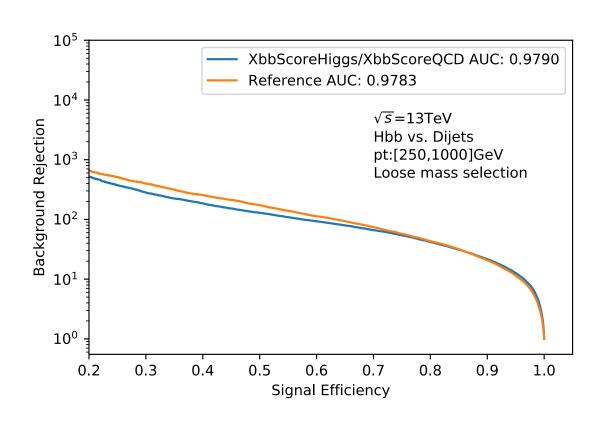


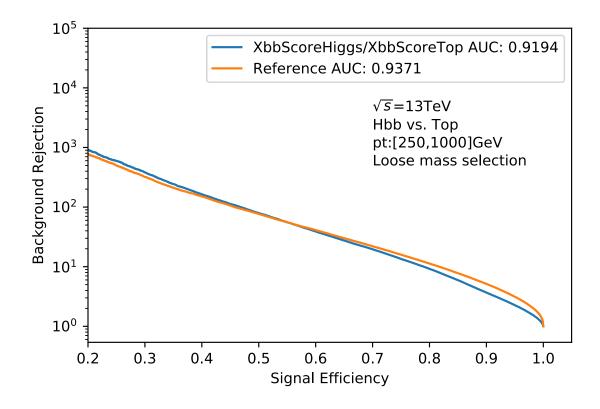
ROC: Loose mass window [84,138]GeV contain 80% of Higgs jets



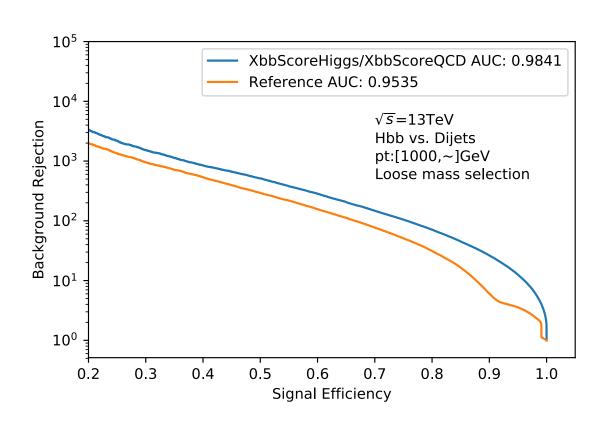


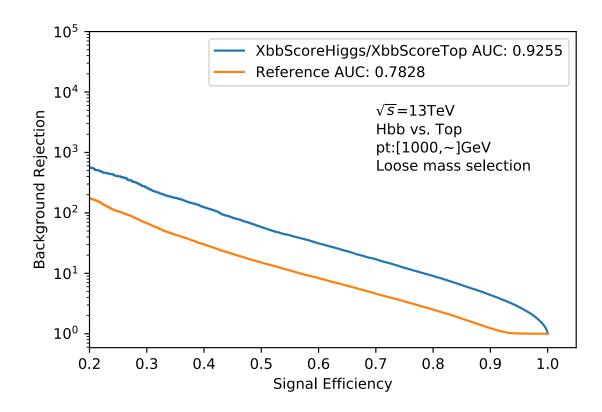
ROC: Loose mass window in low pt range



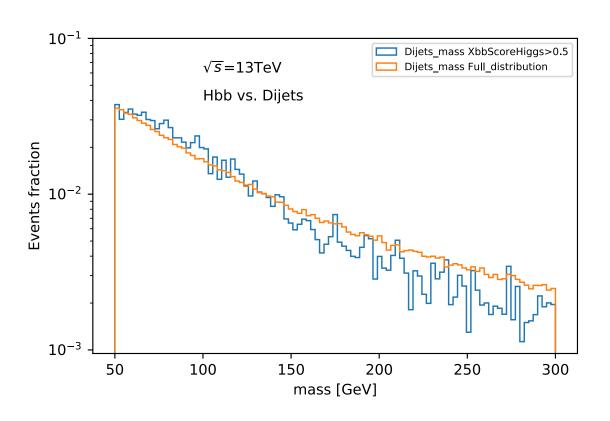


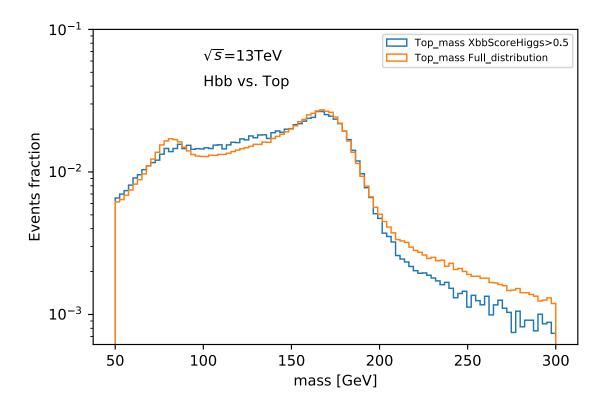
ROC: Loose mass window in high pt range





Jet mass distribution





How to implement

- 1, Reduce sample size and select used features
 - In directory reweight/
- 2, Dijets sampling and split sample into training validation and testing
 - In directory process/
- 3, Sample scaling
 - In directory prepare/
- 4, Training
 - In directory train/
- 5, Performance study
 - In directory study/

How to implement

Key steps involved in my implementation:

- 1, Dijets sampling
 - Dijets sample size is too large
- 2, Sample splitting to training validation and testing
 - Requested in training
- 3, Sample scaling
 - Some events with just one or two subjets and the features in the second or third jet are replaced by Numpy.nan
- 4, Training
 - Reweight strategy and optimizer

1, Dijets sampling

- Merge the Dijets samples by DSID first
 - In script process/mergeDijets/MergeDijetsDSID.py
 - Function Numpy.vstack()
- Randomly choose 0.035 of full samples in each DISD then
 - In script process/mergeDijets/subsampleDijets.py
 - Function 1 select_index=Numpy.random.choice(N,int(0.035*N),replace=False)
 - Function 2 select_sample=Numpy.take(FullSample,select_index,axis=0)
- Merge these different DSID samples after sampling
 - In script process/mergeDijets/MergeDijets.py
 - Function Numpy.vstack()

2, Sample splitting to training validation and testing

- Merge one type of sample into one h5py file with used features
 - Merge hdf files in script reweight/MergeDatasets.py
 - Function Pandas.concat()
 - Convert hdf file into h5py file in script process/flatten.py
 - Function Pandas.DataFrame.values
 - Finally get three h5py files
 - MergedDijets.h5 MergedHbb.h5 MergedTop.h5

2, Sample splitting to training validation and testing

- Split these samples into training validation and testing
 - In script process/split.py (np == Numpy)
 - train_index=np.random.choice(N,2000000,replace=False)
 - remain_index=np.setdiff1d(np.arange(0,N),train_index)
 - valid_index=np.random.choice(remain_index,500000,replace=False)
 - test_index=np.setdiff1d(remain_index,valid_index)
 - {train, valid, test}_sample=np.take(FullSample, {train, valid, test}_index, axis=0)

2, Sample splitting to training validation and testing

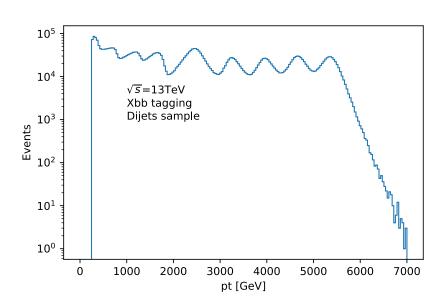
- Label signal and background samples and Merge them by {training, validation, testing}
 - In script prepare/prepare.py
 - label=np.full((N,),0,dtype=int)
 - label_Dijets=keras.utils.to_categorical(label, num_classes=3)
 - [1,0,0]==Dijets sample [0,1,0]==Hbb sample [0,0,1]==Top sample
 - train_Dijets=np.hstack((label_Dijets,Dijets_sample))
 - train_data=np.vstack((train_Dijets,train_Hbb,train_Top))

3, Sample scaling

- Calculate mean and standard deviation
 - In script prepare/calculateMean.py
 - mean_vector = np.nanmean(training_sample, axis=0)
 - std_vector = np.nanstd(training_sample, axis=0)
- Scaling samples
 - In script prepare/scaling.py
 - training=(training-mean_vector)/std_vector
 - The np.nan is still np.nan after scaling
 - new_training=np.nan_to_num(training)
 - Convert these np.nan into number 0

4, Training

- Reweighting strategy
 - Three reweighting strategies are tried
 - Nominal weight which create a smooth falling pt distribution in Dijets sample
 - Reweighting to flat pt
 - Equal weight: all events are weighted to 1
 - Equal weight was chosen by comparison
 - All events are weighted to 1 in training in script train/train.py
 - train_w=np.full((8000000,),1)
 - Pt distribution with equal weight in Dijet sample >



4, Training

Optimizer

- Two optimizers SGD and Adam are tried
- Adam was chosen by comparison
- Adam is used in script train/train.py
 - from keras.optimizers import Adam
 - adm = Adam(lr=params['learning_rate'], decay=params['lr_decay'])

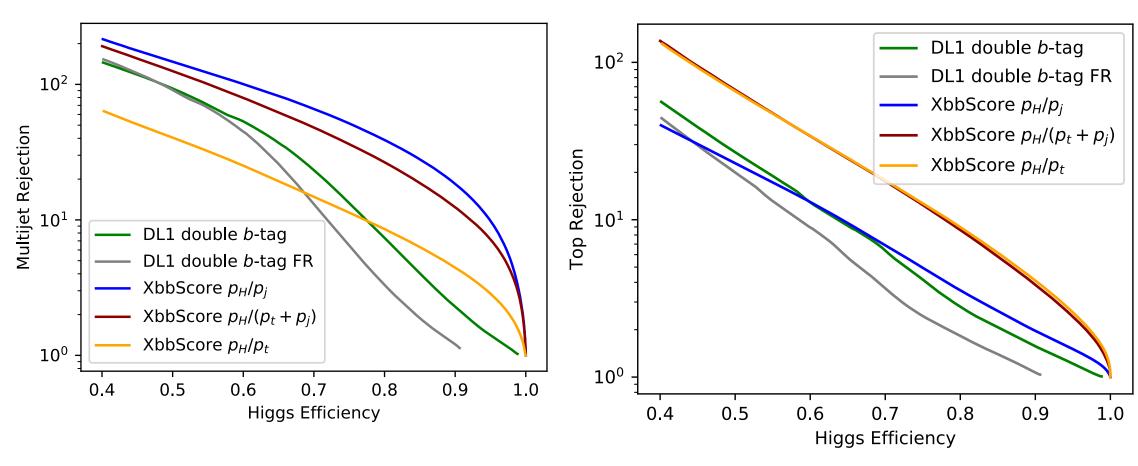
Summary

- Develop a mass-decorrelated Xbb tagger with good performance
- Tagger implementation and the keys technologies are showed:
 - Selecting training feature
 - Dijets sampling
 - Sample splitting
 - Sample scaling
 - Training strategy
- Gang is working on the implementation this to Athena

Back up

Validation from Daniel Williams

• ROC



Validation from Daniel Williams

• Jet mass vs. Higgs efficiency

